Saltar navegación e ir al contenido principal
Biblioteca digital de Bogotá
Logo BibloRed
Saltar el buscador

Esta ingresando al contenido principal

  • Exclusivo BibloRed
  • Libros

Anatomía artística 2: Cómo dibujar el cuerpo humano de forma esquemática

CONTENIDO PARA USUARIOS REGISTRADOS

Inicia sesión para disfrutar este recurso. Si aún no estás afiliado a BibloRed, haz clic en el botón.

Acceder
  • Autor
  • Año de publicación 2019
  • Idioma Español
  • Publicado por LUMEN
Descripción
Citación recomendada (normas APA)
Jorge Luis Borges, "El Aleph", -:LUMEN, 2019. Consultado en línea en la Biblioteca Digital de Bogotá (https://www.bibliotecadigitaldebogota.gov.co/resources/3292018/), el día 2025-07-31.

Contenidos relacionados

Imagen de apoyo de  On the existence of semi-regular sequences

On the existence of semi-regular sequences

Por: Timothy J.; Molina Aristizábal Hodges | Fecha: 2017

Semi-regular sequences over F2 are sequences of homogeneous elements of the algebra B(n) = F2[X1, ...,Xn]/(X21, ...,X2n), which have as few relations between them as possible. They were introduced in order to assess the complexity of Gröbner basis algorithms such as F4, F5 for the solution of polynomial equations. Despite the experimental evidence that semi-regular sequences are common, it was unknown whether there existed semi-regular sequences for all n, except in extremely trivial situations. We prove some results on the existence and non-existence of semi-regular sequences. In particular, we show that if an element of degree d in B(n) is semi-regular, then we must have n ≤3d. Also, we show that if d = 2t and n = 3d there exits a semi-regular element of degree d establishing that the bound is sharp for infinitely many n. Finally, we generalize the result of non-existence of semi-regular elements to the case of sequences of a fixed length m.
  • Temas:
  • Otros

Compartir este contenido

On the existence of semi-regular sequences

Copia el enlace o compártelo en redes sociales

Imagen de apoyo de  Homological characterization of bounded F2-regularity

Homological characterization of bounded F2-regularity

Por: Timothy J.; Molina Aristizábal Hodges | Fecha: 2021

Semi-regular sequences over F2 are sequences of homogeneous elements of the algebra B(n) = F2[X1,…, Xn]/(X2 1,…, X2n), which have as few relations between them as possible. It is believed that most such systems are F2-semi-regular and this property has important consequences for understanding the complexity of Gröbner basis algorithms such as F4 and F5 for solving such systems. In fact even in one of the simplest and most important cases, that of quadratic sequences of length n in n variables, the question of the existence of semi-regular sequences for all n remains open. In this paper we present a new framework for the concept of F2-semi-regularity which we hope will allow the use of ideas and machinery from homological algebra to be applied to this interesting and important open question. First we introduce an analog of the Koszul complex and show that F2-semi-regularity can be characterized by the exactness of this complex. We show how the well known formula for the Hilbert series of a F2-semi-regular sequence can be deduced from the Koszul complex. Finally we show that the concept of first fall degree also has a natural description in terms of the Koszul complex.
  • Temas:
  • Otros

Compartir este contenido

Homological characterization of bounded F2-regularity

Copia el enlace o compártelo en redes sociales

¡Disfruta más de la BDB!

Explora contenidos digitales de forma gratuita, crea tus propias colecciones, colabora y comparte con otros.

Afíliate

Selecciona las Colecciones en las que vas a añadir el contenido

Para consultar los contenidos añadidos busca la opción Tus colecciones en el menú principal o en Mi perfil.

Mis colecciones

Cargando colecciones

Compartir este contenido

Essays on the Economics of International Migration = Ensayos sobre la economía de la migración internacional

Copia el enlace o compártelo en redes sociales

¿Eliminar esta reseña?