Saltar navegación e ir al contenido principal
Biblioteca digital de Bogotá
Logo BibloRed
Saltar el buscador

Esta ingresando al contenido principal

Colección institucional

Fondo fotográfico Eduardo Carranza

Esta colección está compuesta por las fotografías personales de Eduardo Carranza, en su faceta de diplomático e intelectual en España. Cuenta con obras de diferentes fotógrafos.

  • Encuentra en esta colección
    • Otros
    • 1 Prensa
    • 80 Vídeos
    • 127 Fotografías
  • Creada el:
    • 26 de Mayo de 2020
Logo Biblioteca Nacional de Colombia
Creador Biblioteca Nacional de Colombia

Compartir este contenido

Eduardo Carranza (centro) en compañía de Antonio Oviedo y su esposa Carmen Rosa de Oviedo

Copia el enlace o compártelo en redes sociales

Compartir este contenido

Eduardo Carranza en compañía de su madre Mercedes de Carranza y su hermana Mercedes Carranza en el río Cáqueza

Copia el enlace o compártelo en redes sociales

Compartir este contenido

Eduardo Carranza, sentado en una baranda, en medio de dos amigos

Copia el enlace o compártelo en redes sociales

Imagen de apoyo de  Insider Threat Event Detection in User-System Interactions

Insider Threat Event Detection in User-System Interactions

Por: Pablo Andrés; Pendleton Moriano Salazar | Fecha: 2017

Detection of insider threats relies on monitoring individuals and their interactions with organizational resources. Identification of anomalous insiders typically relies on supervised learning models that use labeled data. However, such labeled data is not easily obtainable. The labeled data that does exist is also limited by current insider threat detection methods and undetected insiders would not be included. These models also inherently assume that the insider threat is not rapidly evolving between model generation and use of the model in detection. Yet there is a large body of research that illustrates that the insider threat changes significantly after some types of precipitating events, such as layoffs, significant restructuring, and plant or facility closure. To capture this temporal evolution of user-system interactions, we use an unsupervised learning framework to evaluate whether potential insider threat events are triggered following precipitating events. The analysis leverages a bipartite graph of user and system interactions. The approach shows a clear correlation between precipitating events and the number of apparent anomalies. The results of our empirical analysis show a clear shift in behaviors after events which have previously been shown to increase insider activity, specifically precipitating events. We argue that this metadata about the level of insider threat behaviors validates the potential of the approach. We apply our method to a dataset that comprises interactions between engineers and software components in an enterprise version control system spanning more than 22 years. We use this unlabeled dataset and automatically detect statistically significant events. We show that there is statistically significant evidence that a subset of users diversify their committing behavior after precipitating events have been announced. Although these findings do not constitute detection of insider threat events per se, they do identify patterns of potentially malicious high-risk insider behavior. They reinforce the idea that insider operations can be motivated by the insiders' environment. Our proposed framework outperforms algorithms based on naive random approaches and algorithms using volume dependent statistics. This graph mining technique has potential for early detection of insider threat behavior in user-system interactions independent of the volume of interactions. The proposed method also enables organizations without a corpus of identified insider threats to train its own anomaly detection system.
  • Temas:
  • Otros

Compartir este contenido

Insider Threat Event Detection in User-System Interactions

Copia el enlace o compártelo en redes sociales

Compartir este contenido

Eduardo Carranza en compañía de su tía Julia Fernández de Angulo

Copia el enlace o compártelo en redes sociales

Imagen de apoyo de  De izquierda a derecha: Eduardo Carranza, Adolfo Urdaneta, Jaime Barreto y Luis Gómez

De izquierda a derecha: Eduardo Carranza, Adolfo Urdaneta, Jaime Barreto y Luis Gómez

Por: | Fecha: 2017

Detection of insider threats relies on monitoring individuals and their interactions with organizational resources. Identification of anomalous insiders typically relies on supervised learning models that use labeled data. However, such labeled data is not easily obtainable. The labeled data that does exist is also limited by current insider threat detection methods and undetected insiders would not be included. These models also inherently assume that the insider threat is not rapidly evolving between model generation and use of the model in detection. Yet there is a large body of research that illustrates that the insider threat changes significantly after some types of precipitating events, such as layoffs, significant restructuring, and plant or facility closure. To capture this temporal evolution of user-system interactions, we use an unsupervised learning framework to evaluate whether potential insider threat events are triggered following precipitating events. The analysis leverages a bipartite graph of user and system interactions. The approach shows a clear correlation between precipitating events and the number of apparent anomalies. The results of our empirical analysis show a clear shift in behaviors after events which have previously been shown to increase insider activity, specifically precipitating events. We argue that this metadata about the level of insider threat behaviors validates the potential of the approach. We apply our method to a dataset that comprises interactions between engineers and software components in an enterprise version control system spanning more than 22 years. We use this unlabeled dataset and automatically detect statistically significant events. We show that there is statistically significant evidence that a subset of users diversify their committing behavior after precipitating events have been announced. Although these findings do not constitute detection of insider threat events per se, they do identify patterns of potentially malicious high-risk insider behavior. They reinforce the idea that insider operations can be motivated by the insiders' environment. Our proposed framework outperforms algorithms based on naive random approaches and algorithms using volume dependent statistics. This graph mining technique has potential for early detection of insider threat behavior in user-system interactions independent of the volume of interactions. The proposed method also enables organizations without a corpus of identified insider threats to train its own anomaly detection system.
  • Temas:
  • Otros

Compartir este contenido

Insider Threat Event Detection in User-System Interactions

Copia el enlace o compártelo en redes sociales

Compartir este contenido

Eduardo Carranza en compañía de su madre Mercedes de Carranza y su hermana Mercedes Carranza en el río Cáqueza

Copia el enlace o compártelo en redes sociales

Compartir este contenido

Eduardo Carranza junto a su esposa Rosa Coronado de Carranza y sus tres hijos, Juan, Mercedes y Ramiro Carranza en la playa de Constitución

Copia el enlace o compártelo en redes sociales

Compartir este contenido

Eduardo Carranza, segundo de izquierda a derecha en la fila del medio, entre sus compañeros de cuarto año en la Escuela Normal Central

Copia el enlace o compártelo en redes sociales

Compartir este contenido

Desfile estudiantil, procesión del viernes santo por la plaza de Chipaque

Copia el enlace o compártelo en redes sociales

Selecciona las Colecciones en las que vas a añadir el contenido

Para consultar los contenidos añadidos busca la opción Tus colecciones en el menú principal o en Mi perfil.

Mis colecciones

Cargando colecciones