Realizamos un estudio de las transiciones de fase estructurales de los nitruros III-V GaN, InN y AlN empleando el método de ondas planas aumentadas y linealizadas en la formulación de potencial completo (FP:LAPW) dentro del marco de la teoría del funcional de la densidad (DFT). Para el potencial de correlación- intercambio se utilizó la aproximación de gradiente generalizado (GGA) con la parametrización de Perdew-Burke-Ernzerhof (PBE). Reportamos valores de los parámetros de red a, c /a y u, volumen, energía y módulo de volumen, presiones de transición y cambio de volumen en las transiciones de fase wurtzita?rocksalt (WZ?RS) y wurtzita?zincblenda (WZ?ZB). Nuestros resultados muestran un buen acuerdo con otros reportes experimentales y teóricos e indican que la fase más estable es la WZ siguiéndole la ZB y RS, y que las transiciones de fase estudiadas corresponden a transiciones de fase de primer orden.1. INTRODUCCIÓNLa familia de nitruros III-V ha recibido especial atención en años recientes y en la actualidad está siendo objeto de estudio debido a sus amplias prospectivas de aplicación en dispositivos semiconductores en las regiones de longitudes de onda azul y ultravioleta. Los nitruros GaN, AlN y InN presentan tres tipos de estructura: wurtzita (WZ), zincblenda (ZB) y rocksalt (RS). Experimental y teóricamente se encuentra que la fase WZ es la estructura cristalina más estable de estos compuestos [1?13]. Pueden ser utilizados en dispositivos ópticos que activen los rangos de longitudes de onda desde el rojo hasta el ultravioleta, y para transistores que funcionen a altas temperaturas [12, 14?18]. El AlN se caracteriza por su alto punto de fusión, alta conductividad térmica y gran módulo de volumen [19]. Presenta una brecha de energía prohibida bastante grande, 6.2 eV [20], y así, es uno de los materiales más adecuado para construir dispositivos que trabajen en la región del violeta [21]. En volumen, la forma más estable es la fase WZ. Sin embargo, se ha reportado que puede crecer en fase ZB [18, 22, 23]. La brecha de energía prohibida de la fase WZ es directa y la de la fase ZB es indirecta. Esto puede ser útil en la construcción de diferentes clases de puntos cuánticos o superrredes [21]. De igual forma, el GaN es un material altamente atractivo debido a su gran potencial para el desarrollo de dispositivos optoelectrónicos en el rango de longitudes de onda corta, laseres semiconductores y detectores ópticos [15, 24]. Existe un amplio interés en el GaN hexagonal por su aplicación en LED?s azules [25], diodos laser [26] y fotodetectores ultravioletas [27].
Citación recomendada (normas APA)
Universidad Pedagógica y Tecnológica de Colombia - UPTC, "Transiciones de Fase Inducidas por Presión en los Compuestos GaN, InN y AlN", -:Revista VirtualPRO,, 2022. Consultado en línea en la Biblioteca Digital de Bogotá (https://www.bibliotecadigitaldebogota.gov.co/resources/3867665/), el día 2025-05-22.
¡Disfruta más de la BDB!
Explora contenidos digitales de forma gratuita, crea tus propias colecciones, colabora y comparte con otros.